ELECTRO-TRANSFORMATION OF E. COLI

Reagents:

1 liter LB (2 x 500 ml flasks)
2 liter sterile dH₂0
30 ml 10% glycerol
4 x 250 ml centrifuge bottles

Day 1

- 1. Inoculate 2 x 5 ml LB + tetracycline (12.5 μ gml⁻¹) with single colonies of XL1-BlueMRF' and incubate shaking at 37°C overnight.
- 2. Chill bottles, water, glycerol and rotor in cold room overnight.

Day 2

- 1. Inoculate 2×500 ml of LB + tet with 2×5 ml of overnight culture.
- 2. Grow cells at $37^{\circ}C$ with vigorous shaking to an OD_{600} of 0.5 (the best results are obtained with cells that are harvested at early to mid log phase; the appropriate cell density therefore depends on the strain & growth conditions).
- 3. To harvest, chill the flask on ice for 30' & centrifuge in 4×250 ml bottles in a cold rotor at 5K for 15'.
- 4. In the cold room, remove as much of the supernate as possible. It is better to sacrifice the yield by pouring off a few cells than to leave any supernate behind. Spin 5K 1' & pipet off any remaining supernate.
- 5. Resuspend the pellets in a total of 250 ml (i.e. 4×62.5 ml) ice cold water taking care not to lyse them. Centrifuge at 5K for 15'. Pour off supernate.
- 6. Resuspend pellets in a total of 125 ml (i.e. 4×31 ml) ice cold water & transfer cells to 4×50 ml Falcon tubes. Spin 3K 10' in benchtop centrifuge.

- 7. Resuspend pellets in a total of 20ml (i.e. 4×5 ml) ice cold 10% glycerol & spin at 3K for 10'.
- 8. Resuspend in a final volume of up to 200 μ l ice cold 10% glycerol per Falcon tube depending on how many cells were lost in spins. In general, the less volume the higher the efficiencies.
- 9. Freeze in 40 μ l aliquots in liquid nitrogen and store at -70°C. The cells are good for at least 6 months under these conditions.

Plating

- 1. Gently thaw cells on ice. Remove sterile cuvettes from pouches and place on ice. Place the white chamber on ice.
- 2. Set the Gene Pulser at 25 μF . Set the Pulse Controller to 200 Ω . Set the Gene Pulser apparatus to 2.50 kV when using the 0.2 cm cuvettes (set it to 1.50 to 1.80 kV when using the 0.1 cm cuvettes).
- 3. Add 1 to 2 μ l of DNA to 40 μ l of cells (DNA should be in a low ionic strength buffer such as TE or you may explode your cells). Mix well and let sit on ice for 30 sec. For a control use 1 μ l of 10 pg μ l⁻¹ stock of pBS or whatever vector you're cloning into and plate 100 μ l.
- 4. Transfer the mixture of cells & DNA to a cold electroporation cuvette & shake the suspension to the bottom. Wipe condensation off the cuvette & place in a chilled safety chamber. Push the slide into the chamber until the cuvette is seated between the contacts in the base of the chamber.
- 5. Press both pulse buttons together until it beeps.
- 6. Remove the cuvette and immediately add 1 ml of SOC broth to the cuvette and mix by pipetting up and down a few times. It is a good idea to have the SOC in the pipette before zapping.
- 7. Incubate in capped cuvette for 1 hr at 37° C with shaking & then plate 200 μ l per plate.

SOC (250 ml)

5 g tryptone

0.9 g glucose

1.25 g yeast extract

500 μl 5**M N**aCl

 $625~\mu l$ 1M KCl

2.5 ml 1M MgSO₄

 $2.5 \text{ ml } 1M \text{ MgCl}_2$